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A novel method is presented for the automated recognition of

cryocooled macromolecular crystals. The method uses several

texture-based image-processing algorithms for automated

crystal centring, which are able to cope with a variety of

crystal morphologies and illumination conditions. The results

combined from different algorithms, together with their

estimated standard uncertainties, provide a robust determina-

tion of the crystal location and allow an internal assessment of

their reliability. The method was coded within the software

XREC and showed a good performance on 104 sets of images

from various beamlines.
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1. Introduction

With increasing use of modern robotics equipment, macro-

molecular crystal structure determination now requires an

automated software and hardware pipeline from biological

samples to atomic models which can function in a high-

throughput fashion. At many steps along such a pipeline, the

recognition of crystalline samples is essential. Examples

include monitoring crystal growth, scoring of crystallization

conditions or crystal centring for data collection.

Since the early 1990s, the vast majority of X-ray experi-

ments have been carried out on dedicated synchrotron

beamlines, capitalizing on their superior properties, e.g. beam

intensity, collimation and energy tuneability (Minor et al.,

2000). The diffraction data collection is the last experimental

step in the whole process of structure determination and there

have been impressive developments in the recent past that

have allowed the replacement of many manual tasks by

automated alternatives (Abola et al., 2000; Jacquamet et al.,

2004; Snell et al., 2004). Nevertheless, we are still too far from

having a beamline that is able to provide truly automated

high-throughput data collection. User interaction is generally

required for sample mounting, centring and setting up the

experiments. This not only precludes efficient usage of

synchrotron beam time, but also influences the success of

experiments owing to the human factor.

In this paper, we address the automation of crystal centring

in X-ray crystallographic experiments, which should not only

speed up the data collection, but primarily assure the repro-

ducibility of experiments and allow automated screening of

the samples taken from a carousel by a sample-changer robot.

A number of approaches have been proposed for the

recognition and topological analysis of the loop and its content



in visual light (e.g. Karain et al., 2002; Andrey et al., 2004),

infrared (Snell et al., 2005) and ultraviolet illumination

(Jacquamet et al., 2004; Vernede et al., 2006; Forsythe et al.,

2006). An interesting approach published by Karain et al.

(2002) uses X-ray fluorescence from a crystalline sample

containing anomalous scatterers. Andrey et al. (2004) showed

that the use of a high-resolution zoomable camera for

visualization combined with back-lighting through a

condenser illuminated by optical fibre leads to good results for

crystal centring. The usage of two cameras at the same time, a

low-magnification camera to track the rotation of the loop and

a high-magnification microscope for visualization of the

crystal (e.g. BL38B1 at SPring8 and F2-Station at

MacCHESS), seems attractive, but its wide applicability has

probably still to be investigated. The image-processing algo-

rithms proposed so far are relatively simple and robust, but

assume special conditions (lighting, field of view etc.) that may

be specific for particular hardware installations. A setup for

semi-automated crystal centring, based on a user clicking a

mouse or fingering a touch-screen to indicate the crystal

location through a specially designed software interface, is

employed at several synchrotron beamlines (Snell et al., 2004).

Here, we present a novel approach for automatic crystal

detection and centring that uses texture analysis, which is

targeted towards direct identification of a cryocooled crystal

rather than the loop or surrounding liquid. Because of the

large variety in size and morphology of crystals, illumination

and other hardware specifics that affect the visual appearance

of macromolecular crystalline samples (Fig. 1), a number of

different algorithms have been designed. In order to deter-

mine the location of the crystal in three-dimensional space,

several images taken at different crystal orientations are

processed simultaneously. The results from different algo-

rithms are weighted dynamically. This increases the accuracy

of the estimated coordinates of the crystal centre and, more

importantly, serves as an internal validation criterion indi-

cating the reliability of the result. All this brings the developed

method to a qualitatively more advanced level and allows its

use in a black-box manner.

2. Methods

Four different algorithms followed by a statistical combination

of the results have been developed. Each algorithm is applied

to images of the crystal in different orientations with respect

to the camera. Prior to the application of the individual

algorithms, the input images are checked for the presence of

the loop containing the crystal and, in addition, the image

background is modified if needed.

2.1. Preliminary image analysis

Dependent on the orientation of the loop (Figs. 1a–1d), the

image is rotated so that the loop (alone or together with its

stem and the pin) enters from the bottom of the picture. It may

be the case that an input image I(x, y) does not contain a loop

with a crystal. This can be caused, for example, by inaccuracy

of the sample-changing equipment, a too long or too short

length of the pin, too high a magnification of the camera or the

complete absence of the loop. An intermediate case could be

that the loop is present within the image window only for

certain angular positions of the goniometer system. In order to

identify an empty image, its content is modelled using a two-

dimensional second-order parabolic function. Such a para-

bolic fit is usually satisfactory for background regions or a

featureless image, while for an image containing an object

(with a loop and a crystal) the deviations from the fitted

parabola are significantly high (Fig. 2). In the non-empty

images the modelled background is subtracted. The crystal-

detection algorithms are targeted towards the high-contrast

regions in the image. Thus, the presence of a pin may have

adverse effects. Therefore, the region containing the pin is

detected and its content is removed. The pin has an almost
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Figure 1
The large variety in the visual appearance of crystals mounted in loops. Orientation of the loop: from the bottom (a), top (b), left (c) and right (d); colour
(a, c, d, e, f, g, h) and greyscale (b, i, j, k, l) images; use of ultraviolet (f) and visual (all other) light; back-lighting (g), front-lighting (d, f, j, k, l) and front
light together with a reflection from the back (a, b, c, e, h, i); high (b, c, d, g, i) and low (a, e, f, h, j, k, l) magnification; reflections (b, c) and occlusions
(e, j, k); special markers (b, i) on the images; low (h) and high (a, b, e, g) contrast of the picture; dark (f, j) and bright (all others) background; crystal
appearing in dark (b, d, e, j, k, l), light (c, f) or transparent (a, g, h, i) colour; irregular (c) or well shaped (b, d, g, i) crystals; images containing a part of the
pin (a); small crystals in large loops (a, d, i) and large crystals extending beyond the loop (b, j).



constant width, which is exploited in a row-by-row examina-

tion of the image.

Cases of an empty image or a pin crossing almost the entire

image are reported to the beamline control. These images are

not considered further.

2.2. Molecular replacement in crystal imaging (MoRCI)

MoRCI resembles a two-dimensional analogue of the

molecular-replacement technique in X-ray crystallography. If

the shape of a crystal is approximated by an ellipsoid, one

rotational and two translational parameters have to be

determined to locate it in the image. In our first imple-

mentation we constrained the lengths of the axes of the

ellipsoid to be the same, so that the crystal in the loop can be

considered to be spherical. This simplification results in the

fact that the rotational component of the search vanishes. The

translational parameters are found through sliding of a

circular object with radius r through the image using the

scoring function

�2ðx0; y0Þ ¼
1

N

P
ðx;yÞ2A

I2
Eðx; yÞ �

1

N

P
ðx;yÞ2A

IEðx; yÞ

" #2

; ð1Þ

where (x0, y0) are the coordinates of the centre of the circular

object, A is its area and N is the number of pixels inside A.

IE(x, y) refers to an equalized image, which is obtained by

histogram matching of the content of I(x, y) to a uniform

distribution on a scale from 0 to 255. The translation search in

the above formulation is equivalent to an evaluation of a local

variance, analogous to the technique for identification of

protein regions in an electron-density map (e.g. Terwilliger,

1999; Cowtan, 2001). The search for the highest local variance

has been implemented in reciprocal space.

The resulting ‘textured’ image, for a given radius r of the

circular object, is

ITðx; yjrÞ ¼ �ðx; yÞ: ð2Þ

We note that, given a reasonably large value of r, the value of

the local variance �2(x, y) is (i) zero when the greyscale of the

points inside the mask is alike (e.g. all points are black), (ii)

equal to 2552/12 for uniformly distributed pixel intensities

inside the mask and (iii) is at its maximum of 3� (2552/12) for

the highest contrast (e.g. when half of the points are black and

the other half are white). Image IT is further transformed into

a binary image IB, which in effect selects the areas with the

most contrastive texture,

IB ¼
1 if ITðx; yÞ> 255=121=2

0 otherwise

�
: ð3Þ

The optimum radius r of the circular object is determined as

follows. The largest object in binary image IB is chosen and the

ratio of its area to the area of the circular search object is

computed. For small values of the radius this ratio is high and

it reduces as the radius increases. The optimum radius is taken

when this ratio is about 1.0 (Fig. 3). The centroid of the largest

object in image IB is taken as the crystal centre. For radii that

are either smaller or larger than the optimum, the results

become biased towards the centre of the loop. The successive

steps of MoRCI are depicted in Fig. 4.

2.3. Fuzzy categorization of image histogram (FuCHi)

In general, the distribution of the pixel intensities and, in

particular, the texture type are different for the image back-

ground and the area containing a crystal. Histograms of typical

images are dominated by the background (Fig. 5a). Since a

crystal can be considered as a spatially localized collection of

bright and dark points, the histogram for its area would

primarily contain a contribution from dark (low grey values)

and bright (high grey values) pixels. FuCHi upweights (cate-

gorizes) the pixels with those grey levels, which are at both

ends of the equalized image histogram (Fig. 5b). The cate-

gorization is achieved using an empirical sigmoidal activation

function
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Figure 3
Search for the optimum value of r of the circular object within the MoRCI
algorithm. See text for details.

Figure 2
Modelling image background: an example of one row of an image
containing a loop object. The greyscale values of the pixel intensities in
the row are shown together with the modelled background.



IAðx; yÞ ¼
1

2
f1þ tanh½a � IEðx; yÞ þ b�g: ð4Þ

The parameters a and b defining the shape of the function

(Fig. 5c) are set to empirical values on the basis of the library

of available images. Dependent on the histogram of the input

image, either its dark, light or both parts are activated.

The resulting image IA thus contains a fuzzy likelihood of

pixels belonging to the crystal area. It is then further

smoothed. In order to avoid selection of objects other than the

crystal (e.g. the remainder of the mother liquor around the

crystal or the loop), the centroid of 0.2% of points with the

highest values of likelihood is taken as the crystal centre.

Although the above assumptions do not entirely hold in

general, for large crystals FuCHi produces satisfactory results.

2.4. Two-dimensional features (2DF)

Human vision is amazing in its cognitive capability to give

different attention to the different patterns of the input

picture. The features that our eyes concentrate on first are in

computer vision called ‘information points’ (other terms are

‘points of interest’, ‘corners’ or ‘two-dimensional features’;

Harris & Stephens, 1988; Shi & Tomasi, 1994; Smith & Brady,

1997). Here, we apply a pattern-recognition technique based

on the use of 2DF, which is similar to what Shi & Tomasi

(1994) have suggested for the tracking of moving objects.

Within a square window around each point in image I(x, y)

the characteristic of the texture is determined using the

gradients in the x and y direction, from which the matrix G is

computed,

gxi
¼
@Iðxi; yiÞ

@x
;

gyi
¼
@Iðxi; yiÞ

@y
;

G ¼
g11 g12

g21 g22

� �
;

where

g11 ¼
PN
i¼1

gxi
gxi
; g12 ¼ g21 ¼

PN
i¼1

gxi
gyi
; g22 ¼

PN
i¼1

gyi
gyi
:

The summation is carried out over the total number of points

inside the window, N. The size of the window is set to 5% of

the estimated value of the loop width (described in x2.5

below).

The eigenvalues (�1 > �2) of G serve as good descriptors of

the local texture. Both eigenvalues are low for a flat profile of

the image region; both are high for a two-dimensional texture

(e.g. a corner) and �1 >> �2 for a unidirectional texture pattern

(e.g. an edge). The cases of edges and particularly the corners

are of interest for crystal detection. For these, the value of �2

should be sufficiently high. 200 regions with the top values of

�2 are selected and their centres are taken as 2DF points. The

minimum distance between the 2DF points is set to the size of

the window.

The most likely centre of the crystal is subsequently

determined from the coordinates of 2DF points. The distri-

bution of the 2DF points on the image (Fig. 6a) is smoothed

with the Parzen-window technique using Gaussians as kernel

functions (Fig. 6b). Applying an empirical threshold to the

resulting image gives different objects,

where the largest one is presumed to

represent the crystal mask. In cases

when there are no reflections from the

incoming light, the mask represents the

size and shape of the crystal well

(Fig. 6c).

2.5. Model-based automated crystal
detection (MACyD)

The MACyD algorithm classifies the

image content so that the points least

likely to belong to the area of the crystal

are successively removed. The removal

is based on the assumption that the

crystal is located more or less inside the

loop, which may have a visible stem

connected to a pin. The points that are

left after the removal are analysed and

assigned a score. The point with the

highest score is taken as the crystal

centre.

Rather than processing the entire

image I(x, y), MACyD operates with

its subsampled versions IM(x, y) at

different offset positions. The minimum
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Figure 4
Image-processing steps in MoRCI: (a) the original image; (b) equalized image IE; (c) textured image
IT; (d) binary image IB.



dimension of a subsampled image is chosen to be approxi-

mately 120 pixels. The required subsampling factor M (the

ratio between the dimensions of the original and the

subsample images) determines the number of subsampled

images: 2 � M � 1 subsampled images are taken out of the

total of M � M.

For each subsampled image IM(x, y) the two first-derivative

images (@I/@x and @I/@y) and three second-derivative images

(@2I/@x2, @2I/@y2 and @2I/@x@y) are computed. On the basis of

these derivatives, the edges and the lines from the subsampled

image are enhanced and low gradients and single peaks are

suppressed, yielding a contrast image IC(x, y) (Fig. 7a). This

compensates for the diversity of the input images (see Fig. 1)

and provides a more general applicability for the recognition

algorithm described below.

Since the input image is rotated when necessary so that the

loop enters from the bottom of the picture (see x2.1), the rows

of contrast images IC(x, y) are examined and in each row the

horizontal width of the object is computed (Fig. 7b). The shape

of this curve provides an indication where the pin and the loop

stem are located and the content of the corresponding rows is

deleted. The remaining rows constitute the loop object (with

the crystal inside it). The width of the loop is determined from

the widths of these rows and is subsequently used for esti-

mation of the crystal size. In addition, the estimated bound-

aries of the loop object are removed. This reduces the contrast

contribution from the loop wire, the thickness of which is

assumed to be proportional to the loop width.

The loop region (after removal of its boundaries) in contrast

image IC(x, y) (Fig. 7c) is smoothed by convolution with a

Gaussian kernel. The full width of the Gaussian kernel is set to

one third of the size of the loop object, which should be

comparable to the average crystal size. The resulting global

maximum is taken as the crystal centre (Fig. 7d). A use of a

wider Gaussian kernel would bias the solution towards the

centre of the loop object, while a convolution with too sharp

Gaussians would pick up individual texture features rather

than the centre of the crystalline object.

The set of estimated coordinates of the crystal centre

derived from all subsampled images is checked for possible

outliers, which are removed. The remaining coordinates are

averaged.

3. Implementation

3.1. Combination of the results of the four detection
algorithms

The problem of the visualization of the crystal and the

determination of its coordinates is not only defined by the

great diversity of the image content (Fig. 1), but is additionally

complicated by the fact that a three-dimensional object is

projected onto a two-dimensional picture. When the crystal is

rotated on a goniostat axis, its projection to the camera view

(and therefore the image) is changing. Therefore, each of the

four algorithms described above is applied to a series of
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Figure 6
Use of two-dimensional features for the location of the crystal: (a) top 200 2DFs; (b) image after smoothing with Parzen-window kernel functions; (c)
resultant binary image after selection of the largest object.

Figure 5
An example histogram (a) of an original image; (b) after histogram equalization; (c) blue, the region containing the crystal; red, the activation function
used by the FuCHi algorithm.



images with different orientations of the

crystal with respect to the camera. This

results in L two-dimensional coordi-

nates of the crystal centre (Lmax = 4N),

where N is the number of images in the

series. A full angular range of 360�

would give the best results, but 270�

proved to be sufficient in almost all test

cases. For typically six to nine images

spanning the rotation range, the task of

finding the crystal centre becomes

highly overdetermined and the random

errors affecting the results from indivi-

dual images are largely alleviated.

When the crystal is rotated on the

beamline goniostat, its movement

describes a circle in the plane perpen-

dicular to the rotation axis (Fig. 8).

In the camera view the crystal moves

along the x direction, while its y coor-

dinate is independent of the spindle

rotation. The motion of the crystal in

the image plane can be described by

f ð’Þ ¼ x0 þ r0 cosð’� ’0Þ; ð6Þ

where r0 and x0 are the radius and the

centre of the circle and ’0 is the offset to

the goniometer angular system. Setting

p0 = r0 cos(’0) = �x and q0 = r0 sin(’0) =

�z leads to a linear function with

respect to the parameters x0, p0 and q0,

f ð’Þ ¼ x0 þ p0 cosð’Þ þ q0 sinð’Þ: ð7Þ

The parameters x0, p0 and q0 are deter-

mined by an iteratively re-weighted least-squares minimiza-

tion (Holland & Welsch, 1977) of the residual

PL
i¼1

wi � ½f ð’iÞ � xi�
2; ð8Þ

where the summation is carried out over results from all four

algorithms, wi is the weight for each observation and xi are the

observations provided by the four algorithms for each single

image.

Given an initial set of equal weights wi, the least-squares

solution of (8) provides values of the refined parameters x0, p0

and q0. The new weights are then estimated on the basis of the

deviates �i between the observations xi and the modelled

function f(’i),

~wwi ¼

1=�2
x if �2

i � �
2
x

1=�2
i if �2

x<�2
i � �

0 if �2
i >�

8<
: ; ð9Þ

where �2
x is the weighted average of the squared deviates

�2
x ¼

PL
i¼1

wi � ½f ð’iÞ � xi�
2
¼
PL
i¼1

wi ��
2
i : ð10Þ
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Figure 7
Image processing with the MACyD algorithm. (a) An example of a contrast image IC(x, y): the
darker the point, the higher the contrast is. (b) The horizontal object width (in pixels) plotted for
each row of the image. (c) Remaining pixels in image IC(x, y) after elimination of pin, stem and the
contribution of the loop wire. (d) Smoothed version of the contrast image with the pixels scored for
their likelihood to be the crystal centre, displayed in colours (red corresponds to the highest score).
An enlarged picture is also shown in (c) and (d).

Figure 8
Modelling of the motion of the crystal with the camera view being
orthogonal to the rotation axis. The rotation axis is along the y axis,
whereas the camera view is along the z axis. See text for details.



For convenience, the weights are normalized so that their sum

is equal to 1,

wi ¼ ~wwi

�PL
i¼1

~wwi ð11Þ

The basic idea behind this is to downweight observations that

are far from the modelled function and to upweight those that

are close to the model using ~wwi = 1=�2
i . When the deviations

from the modelled function are too small, �2
i � �2

x , the

observations are given equal weights. This avoids assignment

of unjustifiably high weights. Observations that are too far

away from the approximated function, �2
i > � = 9�2

x , are

considered outliers and assigned zero weights. However, as

soon as the first outlier is detected, this threshold is kept fixed

for all subsequent iterations in order to avoid consecutive

rejection of too many observations. The re-weighted least-

squares procedure is iterated until convergence.

The observed values of yi are treated in a similar manner

but with their own weights,

_yy ¼
PL
i¼1

w
ðyÞ
i � yi: ð12Þ

3.2. Uncertainty of coordinates

In order to estimate the reliability of the determined

coordinates of the crystal centre, (_xx, _yy, _zz), their estimated

standard uncertainty, �tot, is computed as follows. The esti-

mated variance in the y direction is

�2
_yy ¼

1

L� 1

P
i

w
ðyÞ
i � ðyi � _yyÞ2: ð13Þ

The estimated variances �2
x0

, �2
p0

and �2
q0

for the refined para-

meters in (7) are the diagonal elements of the covariance

matrix C,

C ¼
�2

Lfree

� ðJT
�W � JÞ�1; ð14Þ

where �2/Lfree is the goodness of fit,

�2

Lfree

¼

PL
i¼1

wi � ½f ð’iÞ � xi�
2

L� 3
: ð15Þ

W is the diagonal matrix of weights wi and J is the Jacobian

matrix containing the first derivatives of the model function

(7) with respect to the parameters. Since the uncertainty of the

final position in the plane of crystal movement is only a

function of p0 and q0, which are orthogonal to each other and

to the y axis, elementary derivation leads to

�tot ¼ ð�
2
_yy þ �

2
p0
þ �2

q0
Þ

1=2: ð16Þ

3.3. Further statistical evaluation

In addition to the value of �tot, it is of interest to estimate

the probability that, after the crystal has been centred using

the described method, the X-ray beam would hit the crystal

throughout the data collection. To avoid discussion of the

relative orientation of the crystal with respect to the beam, the

crystal is assumed to be spherical with diameter d. We guess

the crystal size using the estimated loop width (x2.5). The

apparent width of the loop varies as the sample is rotated and

its minimum value is taken as the lower estimate of the crystal

size. This corresponds to the worst-case scenario for crystals

with highly non-spherical shape, e.g. plates or needles. In

addition, it is also assumed that the error in crystal centring

follows an isotropic three-dimensional normal distribution

centred on the values (_xx, _yy, _zz) and having a standard deviation

equal to the value of �tot. Let us now assume that the centre of

the beam has been aligned to the determined centre of the

crystal (_xx, _yy, _zz). The probability of such a beam centre hitting

the crystal (hereafter called the estimated reliability of the

method) is equal to the volume of the three-dimensional

normal distribution that is covered by the crystal volume,

P ¼ erf
d

2� 21=2 � �tot

� �
�

d

�totð2�Þ
1=2
� exp �

d2

8 � �2
tot

� �
: ð17Þ

4. Results and discussion

The proposed approach was tested on 104 sets, mostly

containing eight or nine images with 40� increments. These

images were compiled from different beamlines worldwide

(EMBL Hamburg, SRS Daresbury, ESRF Grenoble, SSRL

Stanford, ALS Berkeley and APS Argonne) and are a part of

the growing BIOXHIT annotated image database (Fig. 9). The

crystals were mostly illuminated with visual light, but there

were four cases with UV light. It seems that the use of UV

light provides better visualization of fluorescent crystals and

the success rate of the correct determination of their centre is

higher.

Fig. 10 shows the comparison between the estimated relia-

bility of the calculated coordinates (17) and the actual situa-

tion judged from visual inspection. If the value of estimated

reliability was above 90%, the method indicated successful

centring, otherwise not. 77 cases (red colour in Fig. 10) were

correctly centred on the crystal. In 13 cases (green) the

automated centring pointed towards the edge of (but was still

within) the crystal. In 14 remaining cases (yellow and black)

the centring failed. Indeed, the failure cases correspond to

either very small crystals in large loops, poor illumination

conditions or the presence of ice. Although not straightfor-

wardly, they could nevertheless be centred manually. The

success or failure of centring was appropriately indicated by

the estimated reliability: there were only four false negatives

and five false positives. Thus, the overall success rate of the

presented method could be taken as (77 + 13 � 4 � 5)/104 =

78%. Increasing this success rate will be the subject of further

research.

The method was designed to be of general applicability

regardless of the imaging system and lighting used. At the
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same time, one may want to know the capability of the method

given an ‘optimal’ lighting schema. Each beamline may

obviously have its own optimum conditions and out of 104 sets

of images we have subjectively taken 26 sets from beamline

X12 at the EMBL Hamburg equipped with a MAR Research

desktop beamline (examples of such images are shown in

Figs. 1b and 1i). The success rate for these was 81%, practically

the same as for the whole set of 104 crystals.

The success rate of the crystal centring depends on many

factors and some of them are discussed below.

4.1. Success rate of different algorithms

MoRCI generally produces good results for crystals whose

size is comparable to the size of the loop. However, it also

works for crystals that are as small as the thickness of the loop

wire, provided that there are no strong light reflections from

surrounding liquid. The main assumption of FuCHi is that the

crystal is seen as a collection of bright and/or dark pixel

intensities. Therefore, it shows lower success rate for images

with back lighting when crystals appear transparent. The 2DF

algorithm also gives good results for crystals that are smaller

than the loop (Figs. 1b, 1d and 1i). However, for large trans-

parent crystals (Fig. 1g) the derived coordinates may be biased

towards the centre of the loop. This may particularly occur at

high magnification levels. MACyD models the loop–stem–pin

object based on the contrast between pixel intensities. Apart

from cases with misleading reflections at the surface of the

surrounding liquid, it yields good detection results. Only

MoRCI explicitly assumes that the crystalline object is sphe-

rical. However, the other algorithms also use the steps of

image smoothing, thresholding and centroid determination.

Therefore, they all perform better for solid crystals and poorer

for thin needles.
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Figure 9
A gallery of crystals mounted in different loops. The results of crystal centring are shown by a red cross. (a) A well shaped crystal (courtesy of Cristine
Trame, ALS, Berkeley); (b) a crystal in UV light (EMBL, Hamburg); (c) a small needle-like crystal centred on the edge (courtesy of Gleb Bourenkov,
MPG, Hamburg); (d) a low-magnification image (EMBL, Hamburg); (e) MicroMounts (courtesy of Ana Gonzales, SSRL, Stanford); (f) LithoLoops
(EMBL, Hamburg); (g) a blob-like crystal (courtesy of Bernard Lavault, EMBL, Grenoble); (h) a very small crystal, centred on an artifact (courtesy of
Bernard Lavault); (i) a cryo shadow into the image (courtesy of Mylrajan Muthusamy, SRS, Daresbury),



Each of the four single algorithms may fail to find the crystal

centre in some images, e.g. owing to an unfortunate projection,

specific lighting effect or shadows. Also, the algorithms are

based on different assumptions and not all of them can be

valid for all cases. However, such failures are efficiently

compensated by the weighted least-squares combination of

the algorithms. Fig. 11 shows an example for the curve fitting

of (6) for a data set containing nine images with 40� incre-

ments. Four algorithms produced 36 raw results. The majority

of them correspond well to the fitted curve. However, in two

cases FuCHi deviates considerably from the modelled func-

tion owing to non-compensated background effects. In one

case algorithm 2DF also produced an outlier owing to an

unfortunate combination of the loop orientation and occlu-

sion. The contribution from these three cases was auto-

matically down-weighted.

Detailed evaluation of each algorithm’s performance will be

the subject of future investigations and the derived informa-

tion is expected to be helpful for ‘knowledge-based’ image

interpretation.

4.2. Validation of the error estimates

Equation (16) provides an error estimate on the position of

the identified crystal. Although the dynamic adjustment of

weights is expected to compensate for various effects in

processing two-dimensional projections, it may be thought

that both the accuracy of the result and the error estimate

could be particularly affected by the orientation of the loop

with respect to the image projection. We have therefore

carried out a specially designed experiment to address this

issue.

For two crystals, one well and one poorly visible by eye

(Fig. 12), 36 images with an angular increment of 10� have

been taken. The crystal centre was determined 36 times using

different series of seven images with 40� increment (0, 40, 80,

120, 160, 200, 240�; 10, 50, 90, 130, 170, 210, 250�; etc.). The

locations of the determined crystal centre agree well with each

other within an r.m.s. deviation of nine pixels for one crystal

(15 mm with the used image magnification) and 13 pixels

(25 mm) for the other. These values are also consistent with

the estimated accuracy of crystal location (�tot in equation 16).

4.3. Type of loop

In most of the test cases the crystals were mounted using

Hampton loops. In recent years, new types of loops have

become available displaying new properties (e.g. less X-ray

absorption and scattering, better holding of the crystal). For

example, MicroMounts and LithoLoops have different

geometries compared with conventional Hampton loops.

Although the XREC software was not specifically trained to

deal with these loops, the results are rather promising (Figs. 9e

and 9f). Four out of six crystals in LithoLoops could be

centred. We have not extensively tested the automated

centring with MicroMounts. On one hand, one would expect

that owing to the fixed position of the crystal relative to the

loop, the centring should be more straightforward compared

with other cases. However, it has also been reported that in

practice the condition of a fixed crystal position relative to the

stem is often not met (Lavault et al., 2006).

4.4. Size and morphology of the crystal

The success rate of the proposed method is directly related

to the size and the shape of the crystal. For crystals that are

very small compared with the loop, the determination of the

crystal centre becomes more difficult since there is a relatively

higher fraction of non-crystalline objects that may attract the

detection algorithms. In two cases only the loop could be

centred and, accordingly, the reported reliability was low.

Fig. 9(h) shows an example of unsuccessful centring on such

small crystals. For plate-like crystals and thin needles a better

model for the estimation of the ‘reliability’ (17) is obviously

required. In such cases the method can give a false signal of

low ‘reliability’ even if a centre of the crystal has been
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Figure 11
Example of processing of the results from four algorithms using (6) and
(8).

Figure 10
Success rate of crystal detection as evaluated on 104 data sets with a
combined use of four algorithms. Cases with an estimated reliability of
above 90% would be deemed to result in successful centring.



successfully determined. At the same time, the shape of such

crystals can be exploited for an enhancement of the weighting

scheme (8).

Reflections from the surrounding liquid, occlusions from

loop wire or icing effects can also mislead the crystal recog-

nition. For transparent crystals the additional use of a line-

detection algorithm as implemented in C3D (Lavault et al.,

2006) may be advantageous.

If there is more than one crystal present in the image, the

method tries to centre on the largest one. However, in the case

of equally sized closely located crystals the determined posi-

tion may be in between, thus leading to a false positive.

There are a number of hardware-related factors that may

adversely affect crystal centring. One is the magnification of

the camera (zooming). If it is too high, so that the crystal

covers a large area of the image, the proposed method may

pick a point in the crystal which is not exactly at its centre. If,

on the other hand, the magnification were too low, so that the

crystal (or even a loop) could hardly be seen, the method

would also be unable to find it. In addition, other objects (e.g.

a cryocooling device or its shadow) may appear in the image as

an additional complication. A rule of thumb is that the

centring is successful if the crystal occupies 0.2–15% of the

image area (i.e. the size of the crystal is about 4–40% of the

dimensions of the image). Focusing may also be an important

factor requiring further studies. The out-of-focus regions

might be less attractive for the described texture-search

algorithms, although in all three (out of 104) test sets with

poor focus the crystals were centred correctly.

5. Conclusion

The presented algorithms have been implemented in a

standalone software module XREC, which is available from

http://www.embl-hamburg.de/XREC/ for Mac OSX, Linux

and Windows platforms. Support for other platforms would be

straightforward to add. The software has been written in

C/C++, is reasonably fast and CPU requirements for a typical

image are around 2 s on a modern workstation. We envision

that the highest benefit from the proposed method would be

achieved when it is combined with automated mounting of the

crystals from a carousel and with software (e.g. BEST from

Popov & Bourenkov, 2003) that would allow the estimation of

crystal diffraction properties before the X-ray experiment

commences. It could also be advantageous to make combined

use of the method with other software for crystal centring, e.g.

the C3D software from EMBL Grenoble (Lavault et al., 2006).

Last but not least, XREC has been developed with the aim

that its underlying algorithms could also be applicable for

automated classification of crystallization drops. This will be a

focus of future research.
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